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NERVEPUME INTERACTIONS

Alwyn C. Scott
Center for Nonlinear 8tudic#

Lok Alamos National Laboratori~s
Los Alamorn, New Mexic~ 87545 USA

~~ODUCTION

Traditionally the neuron h~ti been viewed ●m ● linear threshold unit which

generates ●n output when some weighted sum of the inputs ●xceeds a certain value,

Over the peat two decades, however, several suggestions have been ❑ade for mech-

anisms l-j which the neuron ❑ight perform more sophisticated form of information

processing, such am: Boolesn logic ● t dendritic branches [1-8], Time code to space

code trauslationsi on the ●xonal tree [9-14], and Dendrodendritic interactions [15].

Such suggestions have led Waxman to propse the concept of a “multiplex neuron” [16]

which besrs about the same relationship to ● linear threshold unit ●s doeo ● “chip”

to a “gste” in modern integrated circuit technology.

Certainly ●u important aim of neuroscience is to understand the true functional

roles pl~yed by neurons, A first step in this direction ia to ask what it ia that ●

neuron can do, This im ● quention of biophysics, From this spectrum of possible

modes of neuronic behavior, one can then ssk the biological question: What is it

that ● particular neuron does do?

Here I review some recent ●xperimental and theoretical results on mechanism

through which individual nerve pulses can interact. Three modem of interaction are

considered: 1) Interaction of pul-es as they trsvel along a single fibar which

Iesds to velocity dispersion, 2) Propagation of pairs of pulses through ● branchin~

Iegion leaJin8 to quantum ~ulse code transformations,—— ●nd 3) Interaction of pulee~

on parallal fibers through which they may form a pulse assembly, This notion ia

●nalogout to Hebb’s concept of a “cell asoembly” [17], but on a lower level of the

neural hierarchy. It may halp to txplain the extreme sensitivity of neural sy-toms

to nonionizing ●lectromagnetic field- [18,19),

VELOCITYDISPERSION

Contider

ar,! when the

timo : t2 ●nd

the “twin pulse” experiment skstchcd in Fi8. 1. Tha times tl ml t~

first ●nd eocond pulson, rtspectivaly, pass tha firmt ●l~ctrode. Tha

tb ara mimilarly r81stod to the second ●l~ctrodo, Thus tht ●vara8e
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1. Experimental details of
twin pulse experiment on giant axon ef squid,

time interval between the t~o pulses is measured ● s

T=j(t4+t3-t2 - Q t (1)

●l the ratio of the speed bf the second pul~e, 82, to that of the first pulse, e

in
1’

R 1 92/cl

‘2 - ‘1
‘t4-t3 “ (2)

Actually (2) in mot exact because the spcad of tht s~cand pulse is not conBtank. A

-M1l corrcctinn to sccount for thit tffoct is diocussQd in [20], Since tha time



differences for a squid giant axon are a fzw milliseconds and can be measured with

an rms accuracy of about. 0.003 milliseconds, (1) and (2) determine the vel~city

dispersion function, R(T), with an accuracy of a few pcr cent.

A calculation of R(T) can be ❑ade by noting that the leadiug edge of the

second pulse propagates into the tail of the first pl’lse. Since all parameters

that describe the axon are identical for the two pulses, the velocity dispersiol~

function is readily calculated as (see [20] for details)

(3)

where V~ is the threshold voltage of au isolated pulse, and V+ and V(T) describe the

tail of an isolated pulse as is indicated in Fig. 2. ‘
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time T x O indicate~ when the pul~e voltsge paeae~ throush thrrshold (dv/dT E maximum value),
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where t

old and

In

❑ ent of

(2), is

(3) ttle parameter

K= go T/c (4)

is the time constant for exponential rise of the leading edge btl Gw thresh-

C/B. AS the time constant of a resting ❑embrane (= 1 millisecond).

Fig. 3 a measure-

R(T), from (1) and

compared with cal-

Cllat ~Jns from (3). There

e follr calc~llations be-

cause the tail of an iso-

lated pulse was ❑easured

on both electrodes before

and after the measurements

of R(T).

The measurements dis- 1

played in Fig. 3 confirm

previous measurements by

Donati and Kunov [21] and

are in agreement with re-
0.9

cent numerical studirs of

the Hodgkin-Huxley equa-

tions by Hiller and I
Rinzel [22]. Particularly ~

interesting is the “over- 0,8

shoot” when R < 1 and the

second pulse is actu~lly

Uoing faster than the first.

From the measurements ~,

one can define TI ● s the

pulse spacing at which R(T),

determined from (1) snd (2),

ia equsl to unity Like-

wise from the calculations

one can define To ●m the

pulse spacin~ ● t which R(T),

determined from (3), i-

●quhl to unity. In Fig. 4

● comparison of T] with

To in pre#ented for

~— DIAL ERROR

/- .—.—

131-3 -80BI

K “ ,105

CALCULATED BEFORE

MEASIJTED 14,4°C

CALCULATED AFTER

14,4” c

}4,4’ c

i 1 -.~

5 10 15

T (ins) ~

Fig. 3. Comparison of measurements and cmlcu-
lationa of the velocity dimpersicln function R(T).



❑easurements on twelve giant squid axons where the error bars are defined as indi-

cated on Fig. 3. Figure 4 indicates

(5)

with~n the accuracy of the measurements and calculations. However (3) implies that

To is the time at which

the tail crosses through

zero; i.e., V(TO) = O (see

also Fig. 2). However cal-

culations by John Rinzel

for the Hodgkin-Huxley equa.

tions do ~ot confirm this

point. He finds [23]

Temp (“C) T] (ins,) To (ins.)

18.5 4.77 6.14

14.0 7.25 8.53

6.3 16.0 17.2

These calculations are plot-

ted as “~” on Fig, 4 and

appear LO lie below the

●xperimental da:.a although

thi~ distinction is not

quite clc~r. This dis-

crepancy may arise because

the Hodgkin-Huxley ●quations

do not account fur potassium

build up in .he periaxonal

space [24 25].
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Fig. 4. C~mparison of measured T1 and calculated
TO fcr twelve giant squid ●xons. The points ~are

calculated [23] from the Hcdgkin-Huxley equations.

Apart from t$eorcticml descriptions, it is interesting to consider ail the

menaurements of R VB T normalized Lo T1 (made aL Lhe SLazione Zoologica between

J]nuary ●nd June of 1980) on the “fljopech” diagram of Fig 5. Within ● few per

Cd”lt , the data of Fig. 5 can he represented by the ●mpiricml relation

R= 1+(),105; - 1 exp 2.4 2 -~ .
1 1

(6)
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is defined such that R(T1~ = 1.

It should perhaps be ●mphasized that the velocity dispersion implied by (6) is not a

negligible effect. The measurements displayed in Fig. 6, for example, show con-

siderable “frequency smoothing” between the upstream record A and the downstream

[IO-3-WA]

ls-lss”c
1.11— ~1

“ 1
1,0—

1 ~0,9

= 0,0 -

0.7 -
-— PHOTO

0.6.-0

T (m-.) —-—

s—

a Q
l––––3,03cm —-



QUANTUMPULSE CODETRANSFORMATIONS

We turn now to experimental situations in which a nerve pulse disappears sd-

denly during the course of its propagation. I term such ●ffects “quantum” pulse

code transformations to distinguish them from differential transformations related

to velocity dispersion. .In obvious place to seek quantum transformations is at the

points where fibers branch (or “bifurcate”). Branches of Lhe squid giant axon a~e

found at the locations indicated in Fig. 7.

.

, j /

/

Figu 7. Mantle of squid (Loligo vulgaris) showing
ccarm where giant axona ●nd I)ranchea have bee~ removed.

Some typiral brancheu of Lhe #quid giant axon sre dimplayed in Fig. 8 from

which a large variation in tbe ratios of fiber diameters is observed. A measure of

the difficulty ●xperienced by ● pulne as it propa~ates through ● brnnchinu re~ion i~

expreaned by tbe ~eometrical rstio (CR) [26] which is esst-itially the total char-

&cteriutic ●dmittance of outgoing fibere divided by that carryi.na the incoming pulse,

In terns of fiber diameterr (cl) it takes the form
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Fif. 8. Typical branches of squid giaut axon.

Ed3/2

GR =
out

(7)~3/2 ‘
in

If CR = 1, the “impedance m~tching” between outgoing and incoming fibers is per-

fect and a pulse proceeds through the branch with a minimum of difficulty. As GP

becomes progressively greater than one, difficulties increase, Numerical calcula-

tions b~sed on the Hodgkin-Hyxley ❑odel ●xon indicate that a solitsry pulse will

fail to propagate though ● bifurcation with GR 8reater than about 10 [27,28],

A histo8ram for the GR’s obnerved on branching of squid 8iant axona IInder the

assumption of orthoclromic stimulation (i.e. incomin8 pulse on the m-in fiber) is

premented in Fi8, 9, It should be ●mphasized that thenc bifurcations include rather

equal representations of all the different diameter ratios shown iII l~g. 8; thus it

neems that in the squid (Loligo vulgmris) nature is attempting to match impedances



for orthodromic conduction

under a variety of geomet-

rical constraints. I have

carefully examined sixteen

bifurcations under ortho-

dromic stimulation seeking

evidcnc~ for a quantum

change in a temporal

pulse code before and

after the bifurcation.

Although such a change

was sometimes observed,

I failed to find any case

for which surgical dar]age

or the effects of tiring

the axon during the search

could be ●laminated. This

is consistent with the

observations reported in

Refs. [13 and 14].

It is interesting,

therefore, to turn to anti-

dromic stimulation where

the incoming pulse is on

one of the daughter branches

and geometrical ratios

GR ~

Fiq. 9. Histogram of orthodromic CR’s for 109
branches of the squid giant axon.

greater than unity are readily

obtained, A typical example i.s bifurcation #zO-3-80A which is

With stimulation (as Rhown) en the 340 micron di:ught?r, the GR =

ave dispiayed tbe records of a single pulse on both the upstream

shown in Fig. 10,

1.71. In Fig. IOtl

electrode (B) and

the downstream ●lectrode (A). Figure 11 shows that upon stimulation of #20-3-80A

with ● pulse rate of 160 pps. in t single burst of one half second, I obherved ●

gradual change in the out80ing pulse train until, after 200 milliseconds, the output

pulse rate was 80 pps. This effect was observed on several preparations and, for &

pJ~t~CUl~r prep-ration was quite stable ●nd ro~roducible. It is likely thst th~

mechanism here iB related t~ potassium ●ccumulation in the periaxonal ap8cP

[13,14,24,25,29].

An example that demonstrates the f~ilure of two pulses to propsgate through s

branch in shown for #29-2-80B in Figs. 12 ●nd 13. From Fig. 12a the CR = 2.14 and

the state of health for isolated pulses is displayed in Fig. 12b. Figure 13 shows s

critical value of pulse interval ●t which the gecond pulse just fail~ (upper) or



s-

+0,866crn ~ 1.271 cm—-

(a)

Fig. 10, a) Bifurcation. b) Action potentials.

120-3 -80A1

17.1-17.4 *C
I , I , I I

o.7t_lc.Y!!
s 10

T (ins.) ~

17.4°C

Fig.
b) Quantum

(a)
5m8./cm —+

(b)
11. a) Dispersion for bifurcation of Fig. 10. ‘\

Duhe code translation after 200 ma. of stimnlaticm.
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N
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(b)

Fig. 12. a) Bifurcation, b) Action potentials.

succeeds (lower) to negotiate the bifurcation, ‘J’he “hump” that appears in record (R)

of the lower photo in Fig. 13 is an artifact of the appearance of the second pulse.

This observation is important because it permits one to fix the position of the

critical dynamic ●vent that reproduces the second pulse. This location praceeds as

follows. During the course of these experiments it was determined that ro~duct~or~

velocity (e) depends upon axon diameter (d) and temperature as

[1
+

e=& [2.03 + 0.078 (Temp - 18.5)] cin/ms. (8)

where d is ❑easured in microns. From (10) one can calculate the time delay for a

solitary pulse to go from th? crotch ~f the bifurcation to electrode (A); this is

called TA. Likewise TB is calculated as the time for a pulse t.o travel backwa~i’

from the crotch to electrode (B). The total time delay, TD} between the second

pulse and the hump IS greater than TA - TB because the second pulse experiences

velocity dispersion as discussed in the previous section. Thus , assuming that

the second pulse is triggered ●t the bifurcation, one expects



TA - %

‘D= R ‘ (9)

In Fig, 14 is <isplayed a comparison of time delays (TD) calculated from (9:’

with those measured, as in Fig. 13 (lower). Agreement between r~easurements and

calculations implies the second pulse is i-egenerated at the crotch of the bifurca-

tion. The agreement in Fig. 14 indicates that the critical ●vent took place within

a millimeter of the crotch in these four cases. Since no surgical damaRe was ob-

ser- ed in this region, it is reasonable to suppose that the second pulse is bloc~ecl

at the bifurcation. Furthermore three of the four observations indicated in Fig. 14

show agreement with calculations of the relatiun between GR and pulse interval from

the Hodgkin-Huxley model [30]. See [29] for details.

E 20,3°C

0,5m9./cm —

-j t-b

FiR, 13. The cri~ical time int.?rval between two pulses such that
the second pulse Just fails (upper) ON just ~ucceeds to pats through the branch.
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Fig. 14. A comparison of calculated and measured time delays (To)
assuming the second is initiated at the bifurcation.

One general statement. about my observations is the following: Quantum pulsp

cede trlnsformatior,a were only observed in the dispersive region where T < T, and

R<l.

PLILSE IN’f’ER~c’J’IONsON p~L~L FIBERS

An electromagnetic analysis of

b

two parallel fibers enclosed w~thin an ~n-

sulatin8 tiheath leads to ● pair of coupled nonlinear diffusion equations [8,31-33].

In the context of J FitzHugh-Nagumo approximation [341, these take the form

‘3,t
= (1 - U)VI xx - aV2 xx - F(VI) - RI

9 )

‘ltt
= C(V1 - bRl)

‘2,t =(1- @v2,xx - %,%% - F(V2) - }’2 (lo)

‘2, t = C(”
2 - bR2)



where the small COUp1~t18 parameter js ●qual Lo the ratio of ●xternol to internal re-

sistance per unit length. One seeks traveli~g wave solutions of .he form

Vk(x,t) =Vk(&) =Vk(X - ut); k = 1,2 (11)

where u is the propagation speed of two pulses traveling in synchronism. Under this

constraint, (10) becomes ● set of ordinaw differential ●quations

‘1
-“~=Evl

(12)

where, for conveninc~e, it has been auaumed that b = O

A solution of (12) will be two pblsea, one on ●ach fiber, movin~ with the anmr

V?locity. Since a << 1, this solution is written

‘k = ‘ko
+ a V + ,..

k:
; k= ), 2

(k)+ ,,,u(k) r ~. + ~~1

where it is provinion~lly assumed that solutiont

ities for k * 1, 2. Eliminating the R’a yieldt

d3Vho 2
d ‘ko—+u—- ‘Vko +

“(vko)~
+J no

d~3 0 d{2 ~ &o

● ❆❉ a series

(13)

of (12) will have different veloc-

(14)

●nd



3 2
‘Vkl+udvkl ‘Vkl ‘Vko—. F’(Vko) ~ - F“(Vko) ~ - ~ V

d~3 0 d~2 o

2 3 3
. ~:k) & d ‘ko d ‘lo d ’20.— .— .—

i12
‘ko (15:1

0 d~2 d~3 d~3 ‘

The perturbation expanson (13) has reduced (12) to the uacoupled nonlinear equations

(14) and the linear ●quations (15) for the first order corrections. Equations (15]

are uncoupled in the Vkl and the inhomogeneous parts involve only zero order solu-

tions and the first order velocity perturbations. Thus each of (15) can be written

‘kvlk = ‘k

for which a solvability condition is

(Yk,fk) = o

where yk is a solution of

L:yk = O

(15’)

(16)

(17)

?
●nd L is the adjoint o; Lk k

un *r ‘he inner product employed in (16). With the

conventional definition

(17) become-

(18)

From solutions of (18) one can compute inner products with tlie right-hand *ides of

(15) and obtain u~eful expressions for tho first order velocity perturbation~, tht

,



Jk)

1’
To effect this calculation it is convenient to take

F(V) = V - H(V - a) (19)

where H(o) is the Heaviside step function. Chcosing a = 0.3 and & = O.i, Vko (~)

is the pulse shown in Fig. 15. Comparison with Fig. lob or 12b shows that this

choice of parameters is physiologically reasonable. The corresponding solution

of (17) is shown in Fi8. 16.

It is now assumed that V20 differs from Vlo by a translation 6 in $. Thus

v20(g) = V,o(g - 6)

Y2(D = yl(g - 6) .

The solvability condition (]6) requires

where

To first order in a, the condition for ● traveling wave solution is

u(1) = u, + Wfl) (2)= u(2) = U. + aul

or

(20)

(21)

(22)

(23)

Id Fis. 17 the-e first order velocity correction- ● re plotted ●s functionc of 6,

the displacement of pulse #2 with rotpect to pulse #l, Five solutions of (23)

(i ,e, intersections) ● re obnerved, but only three of these (at 6 II 61, 0, ●nd S*61

denoted by open circlez) arn stahl~ in th~ fol?owing mqe. ArI lnrr~ns~ In h



A v(g)
-“1

-30 - 2p -lo 1?
r

(, {~x-ut

r -0.5

Fig. 15. solution of (14)

Yw,

-10

Fit. 16. Solutif!n of (17)



(implying that pulse #2 advances with respect to pulse #1) chuses tne speed of pulse

#1 to become greater than that of pulse //2 which, in turn, causes 6 to decrease. By

a corresponding argument the inursections denoted by closed circles are unstable

This ●ffect has been confirmed by direct integration of the original pale’s (10) [351.

For n weakly coupled fibers, numbered in any order, the relative pulse dis-

placements ❑ust satisfy the obvious constraint

6 +6 +6=0,
12 23+ “’- nl (24)

For ●ach choice of n - I independent 6’s, one can calculate n - 1 differences of

the corresponding velocity corrections aa

(i) ~- ~(i-l)
=IJ

‘i 1
;i=l,2, ,.., n-l. (25)

Uwuo
v

O),u
‘1 o

l\
I \\

I
-8

1

,\,, ,(,
8

1

-20 ‘“lo 10 20
i I

I I I
I
I

8
I
I 1 I

- -- - -w
,5/ 4F–- – -—— —.

\
\ I /
\ I
\ I
\ /
‘, I g- UNSTABLE

\J

+
-2

Fit. 17, Stability diauram from (23),



Then ~ s (Dl, D2, . . . . D~-1) is an n - 1 dimensional vector field in the n - 1

dimensional “&space” where 6 ~ (612, 623, .... 6n-l,n). Condensed pulse states

are defined as stable ztros of

i!)= 5(3) = Ii . (26)

If 6 ~ i+l denotes the position of a pulse on fiber [i + 1) with respect to that of a

pulse’on fiber i, stability (in the sense delcribed above) requires

(27)

for all i. For more than two coupled fibers (n 2 3), this stability condition

is satisfied only for the root of (26) that lies at the origin of 6-space.

Markin [31] has shown that if

this state can “recruit” additional pulses by stimulating neighboring fibers above

threshold,

THE PULSE ASSEMBLY

The recent reviews by Ai3ey [18,19] indicate a surprising sensitivity of living

tisnue to noniooizing electromagnetic fields. Brain tissue, for example, responds

to gradients as low ● s 10
-7 volts/cm in the frequency range from 6 to 20 cycles per

necond. In speculating about mechanisms for this effect, it is necessary to consider

how such weak fields can be recognized above thermal noise. More precisely one must

Buppoae

[ 1~~E2 *a2kTAf ‘ (29)

where the square-bracketed term on the left-hand Bide iR the power per unit ● rea

of ●n incident electromagnetic wave dnd u is the ●haorption cross-section fo: some

(unknown) dynamical variable. On the ri8ht-hand ●ide, Af is the reciprocal of the
-1 =memory time for the dynamical variable. Guided by Fig. 4, one can take Af - T

-1
100 sec . Then with PO = 4n x 10”7 henrys/meter, p = 1 ohm-meter, ●nd E = 10

-7

volt/cm (29) implie~



-5 2U>lo ❑ eter

~ (3 mm)2 .

What neural mechanism could have such

a large absorption ccoss-section7 Ofie

possibility ❑ight be the “pulse as-

sembly” sketched in Fig. 18. Here we

suppose that the longitudinal pulse

locking at time interval T ~ (see

Fig. 5) is acting between pulses

and D afid between pulses D and E.

Also we assume a ‘transverse pulse

locking, determined by (26), is

acting between pulses A, B. and C

and betwfen pulses E and F.

This mechanism is highly spec-

ulative, btit it would deliver in-

formation with an established time

synchronism between the component

pulses as is required by the in-

formation processing ❑echanisms that

have been proposed fcr Waxman’s multi-

plex neuron [16]. Furthermore it is

not inconsistent with the observations

of Schej.bel and Scheibel [36] who have

compared stai[led sections from newborn

and mature cats and conclude that:

During Lhe process of matura-
tion, dc,,drite Bhafto have
been found to rearrange them-
sel~ea into bundles in var-
ioun partm of the ,.~rvouc
s>atem including the ventral
horn of the spinal cord,
brain stem reticular core,
nucleuo reticulatia thalami,
cerebral cortex, ●nd porn”’
sibly in banal ganglia ●nd
certain cranial nerve nuclei.
In nome csaen, the appearance
of bundle complexes -eems
closely time-locked to the
initial development of dis-
crete items of ❑otor per-
fomancem
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Fig. 18. Structure of a “pulse ●ssembly,”
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